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Abslract. For arbitrary level filling, the fully non-local kinetic energy density and Pauli 
potential far the one-dimensional harmonic oscillator can be constructed explicitly. In  the 
present work, these exact results are eventually compared with the low-order gradient 
expansions. This prompts a fuller study of the dimensionality dependence of low-order 
gradient expansions for systems with general one-body potentials, and its relevance to the 
theory of the Pauli potential. One consequence of the present work is to display the 
generalization to D-dimensions as ( D - 2 ) / 3 D  of the three-dimensional Kirzhnits 
coefficient b of the von Weizsicker term i n  the kinetic energy density. 

1. introduction 

A major aim of density functional theory (e.g. Parr and Yang 1989) remains the direct 
calculation of the electron density p ( r )  from a given one-body potential u ( r ) .  Since 
we shall be concerned with D-dimensional systems in the present work, let us first 
note the explicit result of the Thomas-Fermi statistical method: 

(1.1) 

where C ,  is a known constant, while the constant pD is the chemical potential. Equation 
(1.1) is, of course, only quantitative when U varies by but a small fraction of itself over 
a characteristic electron wavelength. When more rapid spatial variation occurs, then 
density gradients must be introduced in order to correct equation (1.1). The simplest 
of these ‘corrections’ stems from the von Weizsacker inhomogeneity kinetic energy Tw 
which is given by 

p = CD{/LD - u)D’2 

(1.2) 

As Kirzhnits (1957) was the first to demonstrate, for weakly inhomogeneous systems 
equation (1.2) must be reduced by some factor, to yield the lowest-order correction 
T, to the Thomas-Fermi (TF) kinetic energy, say To, as 

In three dimensions, Kirzhnits showed that A I ,  f h w = i ,  an alternative proofbeing given 
subsequently by Jones and Young (1971); see also Hodges (1973). 
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2. Exact results for one-dimensional harmonic oscillator 

2.1. Kinefic energy densify 

With this as background, let us next confront the above approximate results with an 
exact model problem: the one-dimensional harmonic oscillator potential with N levels 
singly occupied by non-interacting electrons and N quite general. Following early 
work by Husimi (1940) on the density matrix, Lawes and March (1979) obtained for 
this case the following relation between the potential u(x) and the density p ( x )  
( h  = m =  1): 

( N - u ) p ' + f u ' p + Q p ' " = O  (2.1) 

where we denote df(x)/dx asf'. etc. These functions, together with the kinetic energy 
density f , ( x ) ,  are related by the differential form of the virial theorem derived by March 
and Young (1959; see also Baltin 1985), valid for an arbitrary one-dimensional system: 

f :+fu'p +ip"'  = 0. (2.2) 

Here the following microscopic definition of f, is adopted: 

One can verify immediately that the expression for the harmonic potential in the form 

satisfies equations (2.1) and (2.2). Then, by substitution of equation (2.4) into (2.2) 
we eliminate U to find the result (see also Kozlowski and March 1989, 1990) 

The integral of equation (2.5) is evidently 

(2.6) 

where, because of symmetry, it proves convenient to choose 0 for the lower limit of 
integration. The constant C, is determined from equation (2.4) at x = 0 to be 

CJPI = f ~ - ~ ( O ) N [ p l  - ~ P - ' ( O ) P " ( O )  (2.7) 

where, evidently, 

N = N [ p l = J  d y p ( y ) .  (2.8) 

Therefore, equation (2.6) with equation (2.7) represents the explicit functional depen- 
dence of the kinetic energy density on particle density, for the harmonic osciiiator 
example considered above. It must he emphasized that this dependence on p has for 
N > 1 inherently non-local character (see also section 5 ) .  

I t  is worthy of note that with the above f , =  f , [p ;  XI, equation (2.4) represents the 
one-body potential written as an explicit functional of the particle density. 
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2.2. Pauli potential 

The Pauli potential up(x) (March 1985, Herring and Chopra 1988) can be defined in 
general as the functional derivative of the Pauli energy E,, 

EP[Pl= T J p l -  T,.,[Pl (2.9) 

that is, 

(2.10) 

where T, is the total kinetic energy of the non-interacting electron system, to be obtained 
from the density (2.3) as  

, 
(2 . i i )  c I > ~ ~ . , ~ ~ \  

I s =  J ux r s ( x l  

and T,., is given by equation (1.2). 

equation of density functional theory 
The first term of the expression (2.10) for up can be obtained from the exact Euler 

(2.12) 

where A is the Lagrange multiplier connected with the condition (2.8). The second 
term is obtained by direct functional differentiation of equation (1.2): 

So, from equation (2.10) we have 

P” (P’)2+constant - 
4~ 8 P 

P- 

(2.13) 

(2.14) 

a result valid for arbitrary one-dimensional systems. 
Inserting U from equation (2.4), we obtain finally for the harmonic oscillator case 

(2.15) 

With I , =  t , [ p ; x ] ,  equations (2.6) and (2.7), the expression (2.15) achieves the aim of 
constructing the Pauli potential (see also Nalewajski and Kozlowski 1988) as an explicit 
functional of p for the one-dimensional harmonic oscillator. 

2.3. Pauli energy density 

We define the Pauli energy density in correspondence with the definition (2.9) of the 
!C!2! ?a??!i energy, name!y 

ep(X) = e d x )  -e&) (2.16) 

where the density e,., of the von Weizsacker energy according to equation (1.2) is 

e w-SP -I - 1  IVPI2. (2.17) 
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For the kinetic energy density e, it proves convenient to adopt here the alternative to 
equation (2.3), namely 

which integrates to the same total kinetic energy 

Ts= dxe,(x) i 
since the two densities are related by 

e,= t ,++v2p.  

The total Pauli energy E ,  is likewise given by 

(2.19) 

(2.20) 

E,=  d x e d x ) .  (2.21) J 
The above definitions have the useful properties that e,>O (which is obvious from 
equation (2.18)) and also e P z O  (shown by Holas and March 1991). 

By inserting equations (2.20) and (2.17) into equation (2.16) we obtain the general 
result 

(2.22) 

Evidently, with known f , =  t J p ;  x] for the harmonic oscillator, the Pauli energy is 
known for that example as an explicit functional of p. In fact the expression (2.22) 
with equation (2.6) can be usefully rearranged as 

(2.23) 

with 

CPlP l  =fP-'(0)P"(O)+fP-2(O)~[Pl.  (2.24) 

This may serve also as an alternative to the form (2.6) for the kinetic energy functional 
I, (in terms of ep using equation (2.22)). 

Finally, we obtain from equation (2.15) a relation between up, ep and p (of a local 
character) after inserting there I, from equation (2.22): 

(2.25) 

Of course, it must not be assumed that equations (2.4). (2.61, (2.15), (2.23) and 
(2.25), derived for a harmonic oscillator potential, will be valid for a general one- 
dimensional potential energy. To make progress for this latter case, we shall press first, 
in section 3 immediately below, the consequences of the differential form (2.2) of the 
virial theorem in one dimension, and then, to allow some discussion of higher- 
dimensional problems, we turn in section 4 to the extension of the result (1.1) by 
inclusion of gradient corrections in D-dimensions. 



Kinetic energy and Pauli potential 4253 

3. General non-local theory in one dimension 

To emphasize the role of non-locality for general one-dimensional potentials u(x), let 
us make use of equation ( 2 . 2 )  again. Taking 1, from equation (2 .20) ,  eliminating e, 
from equation (2 .16)  and U using equation (2 .14) ,  readily yields 

e ;  = tpu;  ( 3 . 1 )  
all terms involving derivatives of p explicitly cancelling from the equation. Equation 
( 3 . 1 )  may now he integrated to relate the Pauli potential and energy via p ( x ) :  

This equation generalizes the local relation (2 .25)  for the harmonic oscillator to arbitrary 
one-dimensional potentials. Thus, in all such one-dimensional problems it follows 
from equation ( 3 . 2 )  that knowledge of e,[p;  x] allows not only u,[p;  x ]  to he obtained, 
hut the other density functionals: e , [ p ;  x] from equations (2 .16)  and (2 .17)  and hence 
t . [p;  X I  using equation (2 .20)  and also u [ p ;  X I  from equation (2 .14) .  

Unfortunately, it has not proved possible to date to extend the above argument 
beyond one dimension. Therefore, to treat higher dimensions, and in particular to 
generalize equation ( l . l ) ,  we must resort to a fuller study of the gradient corrections 
introduced in section 1 .  

4. Gradient expansion of kinetic energy density in D-dimensional space 

4.1. General form and leading term 

The gradient expansion of the kinetic energy density may he viewed as a generalization 
of the TF approximation: 

(4 .1)  
The leading TF term e, is the same as the kinetic energy density of a uniform electron 
gas having the local density p ( r ) .  For the D-dimensional case the result is known (e.g. 
see Iwamoto 1984): 

; J p ;  r ]  = eo(p(r))+e,(p(r))(Vp(r))2+higher-gradient terms. 

where 

and therefore 
21 D 

D + 2  
for double occupancy (paramagnetic P case) 01 

K ; = 2 2 1 ” K L  

(4 .3)  

(4 .4)  

(4 .5)  
for the single occupancy (ferromagnetic F case); see also table 1. In connection with 
this table, Baltin (1987)  quotes the paramagnetic K,, for D = 3 ,  while his quoted result 
for D = 1 is the ferromagnetic value. 
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Table 1. Characteristics of a D-dimensional electron gas 

P, paramagnetic occupancy; F, ferromagnetic occupancy 

Expansion (4.1) does not include the V2p term (compare equation (2.20)) since it 
does not contribute to the total kinetic energy T,[p] .  This is why the notation Z3 is 
adopted above in order to distinguish this energy density from e, (equation (2.18)), 
and from f, (equation (2.3)). 

Terms higher than the leading one in the expansion (4.1) are presently known for 
D = 3 only; e.g. e2 was determined originally by Kirzhnits (1957), while Hodges (1973) 
and Murphy (1981) have calculated higher-gradient terms. As was pointed out by 
Hohenberg and Kohn (1964; see also Jones and Young 1971), the result of Kirzhnits 
can be found in an alternative way, from the response function of the electron assembly. 
This approach will be adopted below, in the form given by Hodges for D = 3, because 
this is readily generalized to arbitrary dimensionality. 

4.2. Response function approach for  second-order term 

For an almost uniform electron gas having density 

p ( r )=po+b( r )  (4.6) 

where 6 is a small non-uniform component, the kinetic energy, with accuracy to 
second-order in b, is given by 

T,bl= Tu+ TNu = Tu+; K(q)lb(q)I2 dDq (4.7) 

where the Fourier components of b(r)  are denoted by b ( q ) ,  while the kernel K ( q )  is 
a function of both q and po.  Vectors r and  q are now evidently defined in D-dimensional 
spaces. The non-uniformity ;(r) arises from the application of a small non-uniform 
(NU) external potential having Fourier components u,,,(q) and it can he determined 
by minimizing the following energy: 

t dD(q)[K(q)l~(q)12+(u,,,(q)~*(q)+cc)l. (4.8) 

This leads to the result 

K(q)b(q)  + u e x t ( q )  =O. (4.9) 

But from linear response theory, b ( q )  and u,,,(q) are related via &(q, 0)-the static 
susceptibility (or density-density response) function of a non-interacting electron gas 
(i.e. the Lindhard function for D = 3) 

b(q)  =xb(q. 0)uexr(q) (4.10) 

which yields immediately 

K ( q ) =  -1/xb(q,O). (4.11) 
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By Fourier transforming the quantities occurring in equation (4.7) we find 

Using the long-wave expansion of K ( q ) :  

K ( q )  = ko+k,q2+O(q4) 

(4.12) 

(4.13) 

where the coefficients k,, k, etc are functions of the uniform density p,, we obtain for 
its Fourier transform 

K ( r )  = [k,- k2V:+O(Vt)]S(r). (4.14) 

After substituting this into equation (4.12), and with some manipulation, we find 

dDr(Vi( r ) )2+. . . .  (4.15) 

The first term is to be identified with the second-order correction term of the expansion 
of the TF energy density, occurring in equation (4.1). 

that is, 

(4.16) 

(4.17) 

while the second term in equation (4.15) should correspond to the second term in 
equation (4.1), that is, 

e 2 ( p )  =%,(PI. (4.18) 

The static susceptibility for D-dimensional space is known to be (e.g. see Holas 1990) 

= x m [  1+$$($+0(94)] (4.19) 

for 9 <2k , ,  where F (a,  p ;  y ;  z )  is the hypergeometric function, 

x k ( 0 )  = -Dpki2 (4.20) 

while k, as a function of p is given in equation (4.3). Using equation (4.11) we find 
for the coefficients of the expansion (4.13): 

ko = k$/ Dp k, = ( D  - 2)/12Dp. (4.21) 

By differentiation of equation (4.2), it can readily be verified that k, given in equation 
(4.21) satisfies equation (4.17). The k, in equation (4.21) leads, according to equation 
(4.18) to the following form of the squared gradient term 

e , ( ~ ) ( v p ) ~  = A D P - W P ) ~  (4.22) 
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with 

(4 .23)  

It is clear from equation (4 .23)  that, as in the three-dimensional case, equation 
(1.3), this term differs from the von Weizsacker energy density by a constant factor. 
However, this factor is strongly dependent on dimensionality as ( D - 2 ) / 3 D .  It is 
immediately clear that this contribution is zero for the two-dimensional case, and has 
the negative vaiue -i ior one dimension. In contrast to the TF term, the modified von 
Weizsacker gradient correction has the same form for both single and double occupancy 
( P  and F cases). 

A -I A D  = ( D  - 2 ) A  w / 3  D w-B.  

5. Examples of non-local functional dependence 

To make quite clear the role of non-locality, which is in some sense lost by gradient 
expansions employed in section 4 ,  we return now to the harmonic oscillator example. 
To gain insight, let us write the non-local part of the kinetic energy density r , ,  equation 
(2 .6)  as 

r:'[p; XI =$p(x)F,[p; x]+fp'(x)C.[p] ( 5 . 1 )  

where 

We now investigate the case N = 1. The particle density and its derivatives are 
-112 p ( x ) =  a exp(-x2) 

P'(X)/P(X) = -2x 

p"(x)/p(x) = -2(1 -2x2). 

c, = ( 4 T  -112+271-l/2)/6n-312 = ~, 

Thus, according to equation (2.7). 

Then evaluating equation (5.2) we have 

(5.3) 

(5 .4)  

(5.5) 

(5 .6)  

F,(x) = 1; dy exp(2y'-2x2)(-2y)'. ( 5 . 7 )  

In terms of the new variable f = 2y2-2x2 we find 

dt(  t + 2x2) exp t = 1 - 2x2 - exp( -2x') = ( 5 . 8 )  2 P b )  - r p 2 ( x )  

the last step in equation (5.8) having used equations ( 5 . 3 )  and (5 .5) .  Hence from 
squarrvr,s (2.1,. I-'.", &,,U (2.0,  
- - . . - . : - . . - , < I \  , C L ,  ^--I , C O \  

r:'(x) = -$p"(x) (5 .9)  

and using equations ( 2 . 6 ) ,  (5.1) and (5.9) yields 

t.( x) = i(p'(x) ) 2 /  p (x) - $'( x) = - f p  "Z(x)(p " Y X  ))". (5.10) 
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Since for N =  1 one can choose t j ~ ~ ( x ) = p " ~ ( x ) ,  the result (5.10) gives t, in the form 
valid for an arbitrary system: equation (2.3). This is the reason why the apparently 
non-local form (5.2) becomes local after integration. 

For the N = 2 case, the particle density is 

p ( x ) =  ~ - " ~ e x p ( - x ~ ) ( ~ + ~ x ~ )  (5.11) 

the calculation of C, and F, can again be carried out, with the results 

c, = x (5.12) 

and 

F,(X)  = -?rp2(x) +2(  1 + 2 ~ ' ) - ~ - 6 (  1 +2x2)-'+6- (1 +2x2). (5.13) 

The corresponding non-local contribution to the kinetic energy takes the form 

f:'(x) =$p(x)[2( 1 + Z X ~ ) - ~ - ~ (  1 +2x2)-' + 5  -2x'I. (5.14) 

While the terms within the square brackets in equation (5.14) can be viewed as a 
third-order polynomial in x2, divided by ( 1  + 2 ~ ~ ) ~ ,  and a similar form holds for ( p ' / ~ ) ~  
and p"/p, it is not possible to express this polynomial in terms of the above local 
functionals of p (one needs two more functions, but higher derivatives of p involve 
higher powers of x2). In this way we have shown that t,[p; x] for the harmonic oscillator 
case behaves as for any other system; for N = 1 it is a general local functional of p 
given in equation (5.10); for N = 2, f ,  is inherently non-local and this cannot be removed 
by performing the integration in equation (5.2). Thus, early expectations (e.g. in Lawes 
and March (1979) and some other later papers) that the local density assumption for 
I, holds in the harmonic oscillator case for N 3 2 turn out to be unfounded. 

6. Total energies: higher-order gradient terms for the harmonic oscillator 

One can test the validity of the gradient approximation to local quantities such as 
e,(x)/p(x) or u,(x);  below we check it with respect to the total energies; namely, 
kinetic energyt 

T,= dxp(x)(e,(x)/p(x)) (6.1) I 
to be compared with its gradient expansion 

T,= dxe,-- dxe,+ d x e ?  :I I 
= T , - ~ T , + T ? = T : + T : B ~  (6.2) 

(the superscript hgt indicates higher-gradient terms) and the Pauli potential energy 

+The explicit result a." i s  for the harmonic oscillator example 
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Table 2. The gradient expansion of the kinetic energy and the Pauli potential energy of 
the N-panicle system in the harmonic oscillator potential. 

N 5 I O  I5 20 

TO 6.3616 25.1462 
-'7 1 w  -0.1694 - 0.2 2 3 4 
T!= T,-iTw 6.1922 24.9228 

6.i500 25.0000 , =AN- 

(T , -  T!)/ T* 0.0092 0.0031 

3 To 19.0848 75.4385 

- I .., 
, P  

-4Tw -0.6775 -0.8936 
Vb=3T,-$Tw 18.4073 7 4.5 4 5 0 
VP 18.2419 74.3298 
( Vp- V t ) /  Vp -0.0091 -0.0029 

56.4199 100.1886 
-0.2613 -0.2915 
56,1586 99.8971 
56.2500 IInJ.UUUU 

0.0016 0.0010 

169.2597 300.5658 
- 1.0453 -1.1662 

168.2144 299.3997 
167.9660 299. I254 
-0.0015 -0.0009 

^ ^ ^ ^  

with corresponding gradient expansion for up in the form (A4) below 

V , = 3  dxe,-- dxpu,+ d x p u y  I :I I 
Table 2 shows the values of all these energy terms defined above, for the harmonic 
oscillator. It can be seen that the relative error of gradient approximations to T, and 
V ,  is very small: it reduces from 0.9% for N = 5 to 0.1% for N = 20. Such high accuracy 
(an order of magnitude improvement on corresponding local quantities) is a con- 
sequence of the following properties. In the region of high density, both exact and 

values must be close. In the tail region where exact and approximate local quantities 
differ significantly, the density reduces rather abruptly to become exponentially small. 
Therefore, any quantity weighted with this density during integration gives only a small 
contribution. 

In addition to the above examples, we have thought it useful to include as an  
appendix a discussion in terms of gradient expansions of the differential equation for 
the density amplitude pl" (see equation (A7)), where the role of the higher-order 
gradient terms in the Pauli potential up is displayed explicitly. March and Murray 
(1960; see also Holas and March 1991) introduced such a potential up to replace the 
Euler equation (2.12) by this so-called boson equation (see (A51 and (A7)). 

approximate !oca! quantities ooci!!ate around the game mean value, so their integra! 

7. Summary 

Though this paper is most explicit for one dimension, we have investigated the 
D;dimensional gradient expansion for the kinetic energy density. The Kirzhnits factor 
multiplying the von Weizsacker term is shown to be dependent on dimensionality as 

foi ,kV, :eve{s 
occupied in a harmonic oscillator potentialt. The most useful result for general one- 
dimensional one-body potential problems is equation (3 .2 ) .  This represents the solution 

t Table 2 demonstrates the overall high accuracy of gradient expansions. The dominant role of their 
zeroth-order terms war established. 

(D-2)/3D. 
For one dimension, exp]icii funciiona; rem;is have been 
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to the problem of the evaluation of the functional derivative of E,, in the case for 
which the Pauli energy E ,  is known in the form of the integral of its density e p  as in  
equation (2.21). This also solves the same problem for the kinetic energy functional 
T,, because T, and E, ,  through the definition (2.9), differ only by the von Weizsacker 
term (1.2), the functional derivative of which is known (equation (2.13)). 
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Appendix. Differential equation from gradient expansion applied tn boson equation 

The gradient expansion for the kinetic energy density obtained in section 4 leads to 
the following expansion for the Pauli energy in D-dimensions: 

where 

Therefore the Pauli potential is 

After substituting this expression into the boson equation (i.e. equation (2.12) with 
ST, /Sp  from (2.10)) 

ST, /Sp( r )+  u ( r )  + u p ( r )  = As (A5) 

S T W I S P =  - $ V ' X / X  (A61 
the following differential equation for the density amplitude x ( r )  = p 1 1 2 ( r )  is obtained: 

using the fact that 

Two cases must now be distinguished: 
(i) A D  =0, which holds for D = 2  (see equation (4.23)). 

Then equation (A7) yields 

1 
p( r )  =- ( A s -  u ( r ) +  u"pB'(r))@(A,- u (  r )  - uhpel( r ) )  (A81 

2 K 2  
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where the step function @(x) guarantees that p 3 0 and that p(r)  is a nodeless function. 
The eigenvalue A R  is determined from the normalization condition 

d r p ( r )  = N. (A91 I 
If we neglect the higher-gradient term U",", then equation (AS) reduces to the TF 

equation in the two-dimensional case. 
(ii) A D  # 0; D = 1 or D =3. In this case equation (A71 may be rewritten in the 

standard form of the one-particle Schrodinger equation for x( r ) :  

-fV2X+u;flx=riBX (A101 
where the effective boson potential is defined as  

If the unknown term u:~' is neglected, then equation (A101 can be solved iteratively 
in a standard way to achieve self-consistency, seeking the lowest eigenvalue I,, corre- 
sponding to the nodeless solution for x( r ) .  

For D = 3 the coefficient A,,,/ A D  is positive and equal to 9. Therefore the effective 
boson potential consists of 9 times the original external potential plus some positive 
term which falls to zero as 111 tends to infinity (to have finite integral (A9)). For that 
reason it is to be expected that in most cases such a potential will lead to a bound state. 

However, the situation for D = 1 seems much less favourable when U","' is again 
dropped from equation ( A l l ) .  In this case A,.,/AD is negative, having the value -3. It 
will usually be true that inclusion of some useful approximation t o  will be necessary 
to produce a bound state, as can readily be argued for the harmonic oscillator potential 
u = g  . 1 2  
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